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Abstract 

Thread-level speculation is a technique that enables parallel execu- 
tion of sequential applications on a multiprocessor. This paper 
describes the complete implementation of the support for thread- 
level speculation on the Hydra chip multiprocessor (CMP). The 
support consists of a number of software speculation control han- 
dlers and modifications to the shared secondary cache memory sys- 
tem of the CMP. This support is evaluated using five representative 
integer applications. Our results show that the speculative support is 
only able to improve performance when there is a substantial 
amount of medium-grained loop-level parallelism in the applica- 
tion. When the granularity of parallelism is too small or there is lit- 
tle inherent parallelism in the application, the overhead of the 
software handlers overwhelms any potential performance benefits 
from speculative-thread parallelism. Overall, thread-level specula- 
tion still appears to be a promising approach for expanding the class 
of applications that can be automatically parallelized, but more 
hardware intensive implementations for managing speculation con- 
trol are required to achieve performance improvements on a wide 
class of integer applications. 

1     Introduction 

A chip multiprocessor (CMP) architecture is a high-performance 
and economical solution to the problem of designing microproces- 
sors with upwards of a billion transistors. Multiprocessor architec- 
tures make it possible to design and optimize a small high- 
performance processor and then replicate it across the die. This 
architecture offers the traditional benefits of multiprocessing sys- 
tems: coarse-grain loop intensive programs and multiprogramming 
workloads perform well. In addition, because CMPs support very 
low-latency communication and synchronization between the indi- 
vidual processors, fine grain parallel programs also perform well 
[8]. However, improving the performance of integer C programs 
presents a challenge to a CMP because these programs do not typi- 
cally contain large amounts of thread-level parallelism. Even when 
thread-level parallelism exists it is difficult for a compiler to ana- 
lyze the data dependencies between potential parallel threads and 
guarantee that the threads are indeed parallel. 
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In this paper we describe support for data speculation on memory 
accesses that makes the parallelization of C programs much easier. 
Using data speculation, a compiler and the CMP's hardware can 
partition any program into threads that may execute in parallel, 
without regard for data dependencies. Data speculation hardware 
mechanisms monitor memory accesses made by the parallel threads 
and simply restart any threads that attempt to violate true dependen- 
cies from the original program, forcing them to re-execute sequen- 
tially. These data speculation mechanisms are particularly attractive 
on a CMP, because they rely heavily on a high-bandwidth, low- 
latency interconnect between the processors in order to transmit 
modified data, dependency violations, and thread control synchro- 
nization quickly and efficiently. 

The contributions made by this paper are a complete, detailed 
description of the realistic hardware and software mechanisms 
required to support speculative parallelism in a chip multiprocessor. 
We also describe a genera! thread creation scheme that makes it 
possible to exploit non-loop parallelism in addition to the loop-level 
parallelism exploited by previous proposals. Furthermore, our 
design addresses some of the realistic implementation issues left 
unresolved by earlier work. We present cycle-accurate evaluation 
results of our implementation that augment some of the theoretical 
limit studies presented in earlier work. 

The work described in this paper is based on earlier proposals for 
and implementations of multiprocessors with speculative threads. 
Knight proposed a speculative thread architecture for mostly func- 
tional languages [6] in which hardware is used to enforce the cor- 
rect execution of parallel code with side effects. The Multiscalar 
paradigm [ 1 ] was the first complete' description and evaluation of an 
architecture for speculative thread parallelism. More recently, oth- 
ers have describeid compiler and hardware speculative thread sup- 
port for a CMP [9, 12, 3]. 

The rest of this paper is structured as follows. Section 2 gives a 
brief overview of the basic CMP design. Section 3 gives an over- 
view of data speculation while Sections 4 and 5 discuss our soft- 
ware and hardware support for data speculation and speculative 
threads in detail. We present our results in Section 6. Finally, we 
conclude in Section 7. 

2    The Hydra CMP 

Hydra is our design for a single-chip multiprocessor [4]. All spec- 
ulation support described and evaluated in this paper has been 
added to this basic design. The CMP contains 4 MIPS processors, 
each with a pair of private data caches, attached to an integrated on- 
chip secondary cache using a pair of buses as depicted in Figure 1. 
The processors use data caches with a write-through policy to sim- 
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Figure 1.  The main datapaths in the Hydra CMP. 

plify the implementation of cache coherence. All writes propagate 
through to the write back secondary cache using the dedicated write 
bus. In order to ensure coherence, the other processors' data caches 
watch this bus — using a second set of cache tags — and invalidate 
lines to maintain cache coherence. Intcrproces.sor communication is 
supported by processors recovering the updated version of the line 
from the shared secondary cache. All other on-chip communication 
among the caches and the external ports, such as data cache refills, 
are supported by the cache-line-wide read bus. Both buses are fully 
pipelined to maintain single-cycle occupancy for all accesses. Off- 
chip accesses are handled using dedicated main memory and I/O 
buses. For the applications evaluated in this paper, the bandwidth of 
these buses is not a performance bottleneck. A summary of the per- 
tinent characteristics of the Hydra CMP memory system appears in 
Table 1. 
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Table 1.   Hydra memory hierarchy characteristics. 

3    Data Speculation 

Data speculation mechanisms allow instructions from a sequential 
instruction stream to be reordered, even in the presence of loads and 
stores that may be interdependent. Conventional out-of-order uni- 
processors can reorder most ALU-type instructions in a RISC pro- 
cessor using register renaming and dynamic scheduling. However, 
these processors cannot reorder memory access instructions until 
the addresses have been calculated for all preceding stores. Only at 
this point will it be possible for out-of-order hardware to guarantee 
that a load will not be dependent upon any preceding stores. Fine- 

grained data speculation allows loads to be speculatively executed 
before these store addresses are known. If a true dependency is 
actually detected once the prior store addresses are known, the mis- 
speculated load and any instructions dependent on it may be dis- 
carded and re-executed. As processor instruction windows get 
larger, such speculation becomes more important to allow a greater 
degree of out-of-order instruction processing. 

Data speculation mechanisms can also facilitate the parallelization 
of programs for a multiprocessor. Today, programmers or compilers 
must carefully divide up a sequential program into separate threads 
that are guaranteed to be free of true dependencies through either 
registers or memory. This is often difficult to ensure, especially for 
memory references. Compilers are not able to statically disambigu- 
ate pointers in languages such as C to determine if they may be 
pointing to the same data structures [13]. As a result, existing com- 
pilers must assume that dependencies may be present and therefore 
they generate code conservatively. If a dependency may occur, the 
compiler either cannot divide code into threads or must insert 
explicit software synchronization between threads. 
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Figure 2.   An example of speculative threads with data 
dependencies. 

With thread-level data speculation, a compiler only needs to divide 
a sequential program into threads. The.sc threads are given sequence 
numbers corresponding to the order in which they would execute 
sequentially, but are actually executed in parallel. The data specula- 
tion hardware ensures that true dependencies between memory 
accesses are always honored, even across processors, by simply 
backing up processors that execute a dependent load too early. Fig- 
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ure 2 showB how spe;:ulation hardware can use individual stores as 
synchronization points to detect violations or pass data between 
numbered threads. This mechanism allows parallelizing compilers 
to almost obliviously parallelize programs, since memory depen- 
dencies do not need to be explicitly grouped into a single thread or 
synchronized at compile time. Speculation makes the instruction 
windows in the parallel processors appear to be a single, large 
instruction window, executing a single thread made up of several 
disjoint sections. A compiler may parallelize as aggressively as pos- 
sible, only limited by the potential performance gains from parallel- 
ization. In Section 4 we describe how we create and manage 
speculative threads in the Hydra CMP. 

The effective memory behavior desired during speculation is sum- 
marized in Table 2 for individual accesses to an address. Writes are 
forwarded from earlier threads to later ones. Simultaneously, reads 
are recorded within each processor so that true dependence viola- 
tions can be detected. Forward progress is always maintained 
because one thread will always execute non-speculatively, and so 
will be immune from violations. This head processor is therefore 
actually not speculative at all, a characteristic that can be utilized to 
handle exceptional situations such as calls to the operating system. 
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Table 2.  Desired speculative memory behavior. 
(a) shows what happens when the two processors access the location in 
correct program order (thread i before thread i+1), while (b) shows what 
happens when they access the location In reverse order (i+1 before 1). 

To provide the desired memory behavior, the data speculation hard- 
ware must provide: 

1. A method for detecting true memory dependencies, in order to 
determine when a dependency has been violated. 

2. A method for backing up and re-executing speculative loads 
and any instructions that may be dependent upon them when the 
load causes a violation. 

3. A method for buffering any data written during a speculative 
region of a program so that it may be discarded when a viola- 
tion occurs or permanently committed at the right time. 

In Section 5, we describe how we add the memory system support 
for data speculation to the Hydra CMP. 

4     Speculative Threads 

The two existing speculative architectures take different approaches 
to finding speculative threads within an application. The Multisca- 
lar architecture [11] breaks a program into a sequence of arbitrary 
tasks to be executed, and then allocates tasks in order around a ring 
of processors with direct register-to-register interconnections. 
While the division of a program into tasks is done at compile time, 
all dynamic control of the threads is performed by ring manage- 
ment hardware at runtime. The TLDS architecture [12], based on a 
chip multiprocessor, is quite different. Its hardware provides the 

minimum support necessary for speculation, as described in the 
previous section, and then all thread control is handled by software 
routines that are automatically added to a program at the beginning 
and end of speculative epochs by a compiler. 

We use a combined hardware/software approach, similar to TLDS 
but with somewhat more hardware support, to divide programs into 
threads and then to distribute the resulting threads among the pro- 
cessors in the chip multiprocessor. The hardware support is a specu- 
lation coprocessor which helps execute a set of software 
speculation exception handlers. The extra hardware support 
decreases the software overheads relative to the TLDS approach 
and our hardware/software approach increases flexibility and 
decreases hardware overheads relative to the Multiscalar approach. 
The exception handlers divide applications into parallel threads 
using two techniques. First, subroutine calls cause a fork to occur. 
Afterwards, the original processor executes the subroutine, while a 
checkpoint of the processor state is handed to another processor so 
that it may attempt to execute the code following the subroutine call 
speculatively. Second, specially marked loops may have their loop 
iterations distributed among the processors. Basic compiler support 
for both of these techniques can be achieved without significant 
changes to existing compilers. 

4.1    Subroutine Threads 
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Figure 3.  Subroutine fork and return. 
9 Is a subroutine called within the A/a routine. 
1. The call Is Intercepted during normal execution and the a thread is sent out 

to CPU 1, along with a newly created RPB containing Its starting state and 
the guess for the return value of B. 

2. The original caller continues by executing the B subroutine, staying the 
head processor as this happens. 

3. Meanwhile, CPU 1 picks up the a thread, the caller's continuation code, 
and executes it speculatively. Upon completing this speculative thread, it 
must wait to become the head processor. During both the execution and 
the waiting time, its speculation mechanisms watch stores from 0 to 
ensure that no true dependencies between the threads are violated. The a 
thread is restarted /m/ned/afe/y when such a violation is delected. 

4. Upon becoming the head, CPU 1 completes and returns (or restarts and 
re-executes the a thread if the original return value prediction was wrong). 
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Subroutine speculation is controlled using a linked list of active 
threads ordered from [east-to-most speculative and maintained by 
the speculation support software. When a thread is created, it is 
inserted into this active list. The head processor is always running 
the thread at the beginning of the active list, while more speculative 
processors try to execute the subsequent three threads from the list. 
Speculation is initiated with a fork message that is sent to other pro- 
cessors when a subroutine call is detected. Figure 3 shows the over- 
all sequence of actions in a typical fork. 

When a subroutine call is detected, several steps must occur during 
the actual forking operation: 

1. The processor allocates a register passing buffer (RPB) for the 
thread it is creating by allocating one from the free buffer list 
maintained by the speculation control support software. Since 
our design does not incorporate direct interconnections between 
the processors, a buffer in memory is necessary to temporarily 
hold a processor's registers during the register passing commu- 
nication from processor to processor In addition, since these 
registers may need to be reloaded if a thread is restarted follow- 
ing any sort of speculation violation, it makes sense to allocate a 
buffer once that can hold a thread's starting (or restarting) state 
throughout the thread's lifetime. 

2. The new buffer is filled with all registers that may be saved 
across subroutines (9 integer and 12 floating point using stan- 
dard MIPS software conventions), the current global and stack 
pointers, the PC following the subroutine call, and a prediction 
of the subroutine's return value. For this paper, we used the sim- 
ple repeat last return value prediction mechanism used in [10]. 
While more complex schemes are possible, this technique 
works well because most functions tend to either return the 
same thing continuously (void functions and functions that only 
return error values are good examples), or they are completely 
unpredictable, and therefore should not be selected for specula- 
tive execution at all. These unpredictable functions are pruned 
off and marked as unpredictable after a few mispredictions have 
been detected. 
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Figure 4.   Managing Register Pass Buffers (RPBs). 

3. The new buffer is then inserted into the ust of active buffers, 
immediately after the current processor's, as depicted in Figure 
4(a). This allows the list of active RPBs to act as the active 
thread list, since any child thread created will always be the 
next-mo.st-speculative thread. The thread list must be main- 
tained in memory for two reasons. First, any thread may be 
assigned to any processor over the course of its lifetime, so it is 
necessary to keep the thread list in a central location that all 
may access. Second, since there are frequently more threads 
than processors, it is convenient to simply leave the RPBs for 
these extra threads lying in memory at the end of the active li.st 
until a processor can be assigned to them. 

4. The proces.sor finishes by notifying a free processor (or, if no 
free processors are available, the most speculative running pro- 
cessor will drop its thread and pick up the new one) that it 
should load the registers in the newly created RPB and continue 
working on the code after the subroutine call. 

These steps are currently performed by an exception handler that is 
executed when a subroutine call is detected, so that we could use 
commercially available compilers to compile our benchmarks. 
While we have vectored exceptions for speculation that avoid the 
normal OS exception overhead, inlining the forking code would 
definitely be more efficient, since only the live registers would need 
to be saved in the RPB. At the processor receiving the fork, another 
vectored exception handler gets a pointer to the new buffer from the 
active list, reads in the contents of the buffer into its registers, and 
starts executing the continuation code following the procedure call. 
Due to the overhead inherent in allocating a new buffer and then 
.saving, communicating, and loading most of a processors* registers, 
very short subroutines are marked unpredictable by the return value 
prediction mechanism the first time they are executed so that they 
will not be considered for speculation on subsequent invocations. 

When a subroutine completes after forking off its continuation 
code, it returns to the speculation support software, which performs 
several more steps to complete the forked subroutine: 

1. It waits until it becomes the head processor This is necessary 
because the processor must maintain its dependency violation 
detection buffers for this thread until after it becomes the head, 
since it may be restarted by dependence violations up until this 
point. 

2. The actual return value of the subroutine is compared with the 
one predicted during the last fork. If a misprediction is detected, 
the return value is corrected in the RPB allocated during the last 
fork, and then all of the speculative processors are restarted so 
that they will execute using the new, correct return value. 

3. The RPB of the current thread is returned to the free list as the 
next thread becomes the head. 

4. The old head processor becomes the most speculative proces- 
sor. At this point, it checks to see if there is a fourth RPB that is 
not assigned to any processor in the active list. If so, it starts 
running the thread associated with that RPB. Otherwise, it is 
freed until another fork occurs. 

4.2    Loop Iteration Threads 

A speculative loop is preceded by a check to determine whether or 
not it is possible to start a speculative loop. The loop is executed 
normally if it is known to have poor speculative performance. How- 
ever, if the loop is a good candidate for speculation, a modified ver- 
sion of the loop body, transformed into a self-contained function, is 
executed repeatedly. Lxjop iterations are executed on all available 
processors. They are distributed among processors so that when 
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Figure 5.   A simple example of a speculatively executed loop. 
1. 1. A loop is started — all processors respond, and start executing loop Iter- 

ations in the order of their current state. The initiating processor also gets 
an iteration as It completes the A thread. 

2. When the head processor (speculative state 0) completes a loop iteration, 
it notifies the other processors and starts a new loop iteration while its buff- 
ers are committed to permanent memory. This message causes the spec- 
ulative states of the looping processors to shuffle. Each Is decremented by 
1, except the head, which now becomes the most speculative of the loop- 
ing processors as it starts a new loop iteration. 

3. When an iteration completes after detecting the end-of-loop condition, it 
sends a termination message out to all of the processors. All other proces- 
sors will now be running iterations 'feeyond the end of the loop" that 
shouldn't actually execute, so they are simply cancelled, and are freed to 
execute any threads after the end of the loop. 

4. The terminating processor picks up the a thread, immediately following the 
loop, and completes it. 

loop iteration /, running on the head proces.sor, completes, that iter- 
ation's results are committed to memory and the processor starts 
running the next loop iteration that has not yet been allocated to a 
processor, usually i-^-4, becoming the most speculative processor in 
the process. Meanwhile, the /-t-7 iteration becomes the head itera- 
tion and is allowed to repeat the cycle. This pattern continues until 
one of the loop iterations detects a loop terminating condition, and 
notifies the speculation system. When this processor becomes the 
head, all processors executing loop speculation are cancelled and 
execution returns to normal. A simple example of this execution 
sequence is depicted in Figure 5. 

Two different sets of control code are used for executing loops. 
When starting a large loop, in which the forking of subroutines 
within a loop is desirable, a circle of RPBs pointing to the loop 
body subroutine is inserted into the active thread list when the loop 
is started (Figure 4(b)). Subsequently, when a loop iteration com- 
pletes on the head thread, its RPB is recycled to the end of the loop, 
as the figure indicates. Aside from the RPB recycling and the fact 
that fewer registers must be saved and restored when starting a loop 
subroutine, the system works much like it does with procedure 
forks. Since the active RPB list works the same at all times, this 
model allows speculative thread forks from within a loop or even a 
loop within a loop to work correctly. However, a loop within a loop 
is impractical, even it works correctly, because enough loop RPBs 
are always inserted into the active list when any loop is started so 
that all processors will always be working on the innermost loop or 
subroutines inside of it. Hence, RPBs from outer loop iterations 
will always be far enough back on the active list that they will never 
execute until the inner loop completes. As a result of this processor 
allocation scheme, if nested loops are encountered, we must choose 
which loop is the best choice for speculative execution. Only a sys- 

tem with a very large number of processors could practically con- 
sider dividing up the free processors among several different 
parallel or nested loops in order to run speculative iterations from 
more than one at a time. The second set of control code is faster, but 
less flexible. For loops that do not contain subroutines that need to 
be forked, this quick set of routines allocates a set of four RPBs for 
the loop, one per processor, and then locks each processor into an 
RPB (Figure 4(c)). The overhead of the control routines associated 
with these loops is much lower because it does not have to manipu- 
late the active RPB list after every loop iteration to perform RPB 
recycling or deal with forks or nested loops inside of the loop, 
because these are simply executed inline. While we have not cur- 
rently implemented this feature, it would be possible for a compiler 
to generate code that could first use the slow but sophisticated loop 
control routines to dynamically measure a loop's contents, includ- 
ing that of any inner loops, and then select the quicker routines for 
loops that do not need the flexibility of the full loop handler based 
on its measurements. 

A possible problem with loop speculation is that it may increase the 
amount of memory traffic and the instruction count during the loop. 
The speculative version of the loop cannot register allocate vari- 
ables that are shared across loop iterations, because the data specu- 
lation mechanisms cannot protect against true dependency 
violations in registers. A more complex architecture, similar to the 
Multiscalar architecture [ 11], could track dependencies between the 
processors' register files, but this is difficult to implement in hard- 
ware without an impact on the processor core's performance. 
Unlike our L2 memory system, the register files are an integral part 
of each processor's pipeline, and modifications to allow communi- 
cation between them would likely decrease each processor's core 
cycle time. 

4.3    Thread Size 

Serious consideration must be given to the size of the threads 
selected using the mechanisms we have described, for the following 
reasons: 

• Limited buffer size: Since we need to buffer state from a specu- 
lative region until it commits, threads need to be short enough 
to avoid filling up the buffer space allocated for data speculation 
too often. An occasional full buffer can be handled by simply 
stalling the thread that is producing too much state until it 
becomes the head processor, when it may continue to execute 
while writing directly to memory. However, if this occurs too 
often, performance will suffer. 

• True dependencies: Excessively large threads have a higher 
probability of dependencies with later threads, simply because 
they issue more loads and stores. With more true dependencies, 
more violations and restarts occur. 

• Restart length: A late restart on a large thread will cause much 
more work to be discarded, since a checkpoint of the system 
state is only taken at the beginning of each thread. Shorter 
threads result in more frequent checkpoints and thus more effi- 
cient restarts. 

• Overhead: Very small threads are also inefficient, because there 
is inevitably some overhead incurred during thread creation and 
completion. Programs that are broken up into larger numbers of 
threads will waste more time on these overheads. 

Our on-chip bus communication mechanisms between processors 
typically result in overheads of 10-1(X) cycles for most speculation 
operations. In order to amortize these overheads while still keeping 
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threads short enough to avoid the long-thread problems, threads of 
300-3000 instructions are optimal. 

Not all loop bodies and subroutines are in this perfect size range. 
Also, many of these fwssible threads have too many true dependen- 
cies across loop iterations or with their calling routines to ever 
effectively achieve speedups during speculative execution. With an 
infinite number of procesors, it is possible to attempt to run every 
loop iteration and subroutine in parallel. However, many processors 
would be wasted achieving negligible speedups on the nonparallel 
routines. Unfortunately, we only have a finite number of processors. 
As a result, care must be taken to allocate these processors to spec- 
ulative threads that are likely to improve performance. 

There are two heuristics that we use to find and prevent speculation 
on nonparallel threads: violation counters, to eliminate threads with 
many dependencies, thread timers, to eliminate threads that are too 
short or long, and stall timers, to find threads that are stalled too 
long. Once nonparallel threads are discovered, we record that they 
should not be speculated on in a prediction table. We currently 
maintain a hardware prediction table, but it would be possible to 
perform this entirely in software at the cost of more overhead in the 
thread forking routines. 

4.4 Synchronization 

If a compiler can identify a variable in a speculative region that is 
likely to cause frequent violations, it may put explicit synchroniza- 
tion into the code, protecting the critical region where the variable 
is used, to eliminate the violations caused by those regions. This 
synchronization mechanism is simply a busy-wait loop at the begin- 
ning of the critical region that reads a lock variable, using a load 
instruction that will not cause violations when a less speculative 
processor updates the lock (in our simulator, the MIPS load locked 
instruction is given these semantics during speculation, since it is 
not needed for normal multiprocessor synchronization while the 
speculation hardware is active). At the end of the critical region, a 
normal store instruction may be used to indicate that the lock is free 
to the next speculative region. 

It should be noted that unlike traditional MP synchronization, spec- 
ulation synchronization is only used to improve performance, and is 
not necessary to ensure correct code execution. As a result, it can 
often be avoided for many variables that would traditionally require 
synchronization. Instead, only the few variables that cause exces- 
sive numbers of violations are targeted for synchronization. 

4.5 Support for Precise Exceptions 

If a speculative thread requires operating system services through a 
system call or an exception, the thread is stalled until it becomes the 
head processor. At that time, the operating system, which is not 
compatible with speculative execution, may be safely entered. If a 
thread violates or is aborted while waiting, the operating system 
call or exception is simply discarded. This is critical because specu- 
lative threads frequently cause segmentation faults by dereferencing 
null pointers or accessing data beyond the end of arrays. These 
extraneous segmentation faults must be squashed because they 
would not occur in sequential execution. 

4.6 System Level Issues 

In our implementation, speculative threads can coexist with other 
speculative and non-speculative threads from the same process or 
from a completely different process. When a point in the execution 
of the program is reached where there are explicitly parallel threads 

generated by a compiler or by hand, it is possible to tiirm off the 
speculative support and just execute the threafts like a traditional 
multiprocessor. This can be done dynamically as the program exe- 
cutes. Speculation can be re-enabled when a speculative region of 
the program is reached. A feature of our speculative thread imple- 
mentation is that it is possible for the operating system to steal one 
or more processors from a process while it is executing a specula- 
tive region. In this case the speculative control mechanisms release 
the mo.st speculative processors. These processors can be used to 
run other spieculative or non-.speculativc threads from another pro- 
cess. 

4.7    The Speculation Control Coprocessor 

The hardware-.software interface used to control speculative threads 
is implemented using the MIPS coprocessor CP2 interface. Our 
simple coprocessor has several hardware mechanisms for control- 
ling speculation. A collection of small software control routines is 
used to operate CP2. These functions are listed in Table 3. As is 
noted in the table, some are invoked directly by software, while oth- 
ers act as exception handlers triggered by hardware events or mes- 
sages from other processors in the system. CP2 maintains a table of 
exception vectors for speculation events, so these exception han- 
dling routines can all be started without the overhead of the operat- 
ing system's normal exception dispatcher. Internally, the 
coprocessor uses four identical state machines to track the state of 
the threads executing on all processors, so that exceptions may be 
generated or screened correctly depending upon the overall state of 
the system. Finally, the coprocessor contains the timers and predic- 
tion tables used to prevent speculation on nonparallel threads and to 
predict return values for speculative procedure continuations. 

Many state transitions are initiated by messages sent between pro- 
cessors during the speculation control routines. These stores are all 
to a special memory address used only for message passing, using 
normal store instructions. When another processor sees a store to 
this special address on the write bus, it responds by modifying its 
internal state, and/or triggering an exception and starting the appro- 
priate handler. 

5     Hardware Support for Data Speculation 

Previous data speculative architectures have proposed several dif- 
ferent mechanisms for handling speculative memory accesses. The 
first was the ARB, proposed along with the Multiscalar processor 
[2]. This was simply a data cache shared among all processors that 
had additional hardware to track speculative memory references 
within the cache. While a reasonable first concept, it requires a 
shared data cache and adds complex control logic to the data cache 
pipeline which has the potential to increase load latency and limit 
data cache bandwidth. More recently, the Multiscalar group has 
introduced the speculative versioning cache [3], a set of separate 
data caches distributed among the processor cores in the Multisca- 
lar processor that maintain their speculative state within the caches 
using a complex and sophisticated writeback cache protocol. Con- 
currently, the TLDS researchers have proposed a similar scheme 
[12]. However, they chose to keep their protocol much simpler, at 
the expense of performance-limiting bursts of coherence bus traffic 
at the end of every speculative epoch and an inability to forward 
data from speculative iterations using normal memory references. 
Instead, they added a special shadow memory for critical values 
that require early forwarding between epochs. This places an added 
burden on the compiler to identify the values that need to be for- 
warded. 
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Group ";i»ndler Use What it docs OYcrhetd (iiutr.) 

Subroutines F<»k 
Exceptittn, generated upon execution of a jump-to-subroutinc 
(JALR) instruction 

Allocates an RPB, saves necessary processor state into the RPB. and then sends a 
FORK command out to the most speculative (or free) processor. 

-70 

Suhniutine Complclion 
Routine returned to after a forked subroutine completes, 
inMead of the ntimta) return addrcs& 

Waits to become the head, commits speculative data, checks die guessed return 
value from the last fork against the acmal one. kills speculative processors if 
necessary, and Oien conUnues widi a "Stan Buffer" command to get a new thread. 

-40 + full -Stan 
Buffer 

Slan BulTcr 
Jumped to by completion commands or an exccptittn 
triggered by a FORK or STARTLOOP 

SelccUt one t>f the first 4 RPBs on the active list, deletes any old children 
generated by this thread during any restarted earlier executions, reads in its 
contents, and begins executing the subroutine or loop thread. If insufficient 
threads are available, the processor is freed. 

Full; -fO (loop) 
or -75 (fork) 

Shiit: -25 (loop) 
or-40 (fork) 

Loops Slan Speculative Lotip Called by spcc.beginO in original program code 
Scu up a ring of RPBs for " slow"   hiop operation, ainflguring their bulfcrs 
correctly, then sends out a STARTLOOP bus command to other processors. 

-75 

Start Speculative Utop 
tquick veruiin) 

Called by spec_bcgin_quickO in original program code 
Sets up 4 RPBs for "quick" loop operation, configuring their buffers cotiectly. 
then sends out a STARTLOOP bus command to other processors. 

-70 

EniJ-nf-lleratiott 1 
Tcrniinalc 

Routine returned to alter a speculative loop lleratioo 
complcu:s 

Wail! U) become the head, ammits speculative data, moves iu RPB to the end of 
the loop, making adjusmients to it if it was used for a fork during die Itxtp 
iteration, and claims die next availaMe iteration with a COMPLETE command, or 
commits its speculative data, discards all of Ute RPBs widiin die entire Itxip, and 
kills all other loop iterations widi a KILL command before picking up die buffer 
following die loop with a "Start Buffer" command. 

-45 + short "Stan 
Buffer" 

Enil-uMtcraiitm / 
Terminate (ipjick 
version) 

Routine returned to after a speculative loop itenuion 
completes the end of every iteration. 

16 (on EOl) or -45 + 
short "Start Buffer" 

(on terminate) 

Support Violalinn: hiliate 
Exception, initiated by a RAW hazard deuxtion m the LI 
cache speculation logic 

Causes speculative data to be discarded and the iteration to be restarted, and sends 
out a KILL bus command to following CPUs. a quick loop) 

Viiilatiim; Receive Exception, initiated by KILL bus command Causes speculative dau to be discarded and die iteration to be restarted. 
8 ♦ full "Stan Buffer" 
(11 if in a quick loop) 

Hiikl: BulTcr Full 

Exception, initiated by buffer-management hartlwate within 
each CPU. due u> a full L2 butter or the possible Itws of read- 
bit informatitio due tn an LI replacement 

Causes die CPU to slop until it becomes the head CPU, when it is altowed to 
cominue non-speculativcly. bypassing die full buffer. 

15 

HiiIJ: Exccptitin 
ExcepUon. initiated in place of a -normal" instruction 
exception or system call trap encountered during speculation 

Causes the CPU to stop until it becomes the head CPU. when it is allowed to 
continue non-speculativcly widi die SYSCALL or inslrucUon cxcxption. 

25 + OS time 

Table 3.  A summary of the software handlers required to support speculation 

In our implementation, we took advantage of Hydra's write-through 
data caches and bus system to build a protocol that is easily imple- 
mented without impacting the CMP's basic cycle time, is as effi- 
cient as the SVC scheme, and only requires simple coherence 
protocols. To add this speculation support, several key hardware 
elements have been added to the existing Hydra design. A block 
diagram of these additions, including their interface to the control 
coprocessor, is shown in Figure 6. The remainder of this section 
describes these additions. 

5.1    Data Cache Modifications 

Each data cache line tag includes several additional bits to record 
state necessary for speculation as shown in Figure 7. The first two 
bits are responsible for modifying the basic cache coherence 
scheme that invalidates a data cache line only when a write to that 
line from another processor is seen on the write bus. 

• Modified bit: This bit acts like a dirty bit in a writeback cache. 
If any changes are written to the line during speculation, this bit 
is set. These changes may come from stores by this processor or 
because a line is read in that includes speculative data from 
active secondary cache buffers. If a thread needs to be restarted 
on this processor, then all lines with the modified bit set are 
gang-invalidated at once. 

• Pre-invalidate bit: This optional bit is set whenever another pro- 
cessor writes to the line, but is running a more speculative 
thread than this processor. Since writes are only propagated 
back to more speculative processors, we are able to safely delay 
invalidating the line until a different, more speculative thread is 
assigned to this processor. Thus, this bit acts as the opposite of 
the modified bit — it invalidates its cache line when the proces- 
sor completes a thread. Again, all lines must be designed for 
gang-invalidation. If pre-invalidate bits are not included, writes 
from more speculative processors must invalidate the line 
immediately to ensure correct program execution. 

GangCtMrMiaHhar 
CommN or Saclnip 

-1 1_    I      I      I I 1    T    I     .!._!  . I„L_.'_—' 
^a^ byjWer^ BH^ yft BtyMiyf Wc^ tttf 

QangCtaarantf Qm%atMw4 
ForealnvaiMatleii     Forca InvalMatlan 
en Baekuf only        en i:anmlt only 

Figure 7.  Data cache tag bits used for speculation. 

Figure 6.   Hydra speculation hardware. 
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The other two sets of bits allow the data cache to detect true depen- 
dence violations using the write bus mechanism. They must be 
designed to allow gang-clearing of the bits when a speculative 
region is either restarted or completed. 

• Read bits: These bits are set whenever the processor reads from 
a word within the cache line, unless that word's written bit is 
set. If a write from a less speculative thread, seen on the write 
bus, hits an address in a data cache with a set read bit, then a 
true dependence violation has occurred between the two proces- 
sors. The data cache then notifies the processor's CP2, initiating 
a violation exception. Subsequent stores will not activate the 
written bit for this line, since the potential for a violation has 
been established. 

• Written bits: To prevent unnecessary violations, this bit or set of 
bits may be added to allow renaming of memory addresses used 
by multiple threads in different ways. If a processor writes to an 
entire word, then the written bit is set, indicating that this thread 
now has a locally generated version of the address. Subsequent 
loads will not set any read bit(s) for this section of the cache 
line, and therefore cannot cause violations. 

It should be noted that all read bits set during the life of a thread 
must be maintained until that thread becomes the head, when it can 
no longer needs to detect dependencies. Even if a cache line must 
be removed from the cache due to a cache conflict, the line may still 
cause a speculation violation. Thus, if the data cache attempts to 
throw out a cache line with read bits set it must instead halt the pro- 
cessor until the thread becomes the head or is restarted. This prob- 
lem can largely be eliminated by adding a small victim buffer [5] to 
the data cache. This victim buffer only needs to record the address 
of the line and the read bits in order to prevent processor halts until 
the victim cache is full. To simplify our current implementation, we 
assume that an infinite-size victim buffer, containing only read bits 
and addresses, is attached to each data cache. 

5.2    Secondary Cache Buffers 

Buffering of data stored by a speculative region to memory is han- 
dled by a set of buffers added between the write bus and the second- 
ary cache (L2). During non-speculative execution, writes on the 
write bus always write their data directly into the secondary cache. 
During speculation, however, each processor has a secondary cache 
buffer assigned to it by the secondary cache buffer controller, using 
a simple command sent over the write bus. This buffer collects all 
writes made by that processor during a particular speculative 
thread. If the thread is restarted, then the contents of the buffer are 
discarded. If the thread completes successfully, then the contents 
are permanently written into the secondary cache. Since threads 
may only complete in order, the buffers therefore act as a sort of 
reorder buffer for memory references. 

The buffers, depicted in Figure 8, consist of a set of entries that can 
each hold a cache line of data, a line tag, and a byte-by-byte write 
mask for the line. As writes are made to the buffer, entries are allo- 
cated when data is written to a cache line not present in the buffer. 
Once a line has been allocated, data is buffered in the appropriate 
location and bits in the line-by-line write mask are set to show 
which parts of the line have been modified. 

Data may be forwarded to processors more speculative than the one 
assigned to a particular secondary cache buffer at any time after it 
has been written. When one of these later processors mis.ses in its 
data cache, it requests data from the secondary, as in the normal 
system. However, it does not just get back data from the secondary 
cache. Instead, it receives a line that consists of the mo.st recent ver- 

Addresses    Write Data in from Write Bus 

Tail 

Head- 

V 
1-2 Tag 
[CAM] 

Data 
(L2 cache line) 

Drain writes to \J2 cache 
after committing the CPU 

From other write 
buffers and L2 

\ 

LU. 

Write Mask 
(by byte) 

Priority encode 
.,     by byte 

Mux the most recent version 
of each byte to the read bus / 

ode^ 

Bead Data out to Read Bus 

Figure 8.  The secondary cache write buffers. 

sions of all bytes in the line. This requires priority encoders on each 
byte to select the newest version of each byte from among this 
thread's buffer, all buffers from earlier threads that have not yet 
drained into the secondary, and the permanent value of the byte 
from the secondary cache itself. The composite line is assembled 
and returned to the requesting processor as a single, new, and up-to- 
date cache line. While this prioritization and byte assembly is rea- 
sonably complex, it may be done in parallel with each secondary 
cache read — normally a multicycle operation already. 

When a buffer needs to be drained, the processor sends out a mes- 
sage to the secondary cache buffer controller and the procedure is 
initiated. Buffers drain out entry-by-entry, only writing the bytes 
indicated in the write mask for that entry. Since the buffers are 
physically located next to the secondary cache, the buffer draining 
may occur on cycles when the secondary cache is free, without the 
use of any global chip buses. In order to allow execution to continue 
while buffers drain into the secondary, there are more sets of buffers 
than processors. Whenever a processor starts a new thread, a fresh 
buffer is allocated to it in order to allow its previous buffer to drain. 
Only in the very unlikely case that new threads are generated so 
quickly that all of the buffers contain data must new threads be 
stalled long enough to allow the oldest buffers to drain out. 

Buffers may fill up during long running threads that write too much 
state out to memory. If these threads are not restarted, they wait 
until they become the head processor, write their buffers into the 
.secondary cache, and then continue executing normally, writing 
directly to the secondary cache. To detect this buffer full problem, 
each processor maintains a local copy of the tags for the write 
buffer it is currently u.sing. This local copy can detect buffer full 
conditions while the store that will overflow the buffer is executing. 
This store then causes an exception, much like a page fault, which 
allows the speculation mechanisms to handle the .situation. 
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5.3    An Overall View of Speculative Support 

To briefly illustrate how these modifications work together. Figures 
9 and 10 show the operation of speculative loads and stores. 

4 iteration windtnvs are possible:| 

SpacOatlva, lataf CPU. 

CPU 
#i+2 

CPU 
#i+3 

Figure 9.  The operation of speculative loads. 
A CPU first reads from its data cactie.The read bit fortfie word is set, if the 
written bit for the word does not indicate that it is already a local copy. 
In the event of an data cache miss, the L2 cache and write buffers are all 
checked in parallel. The newest bytes written to a line are pulled in by pri- 
ority encoders on each byte, according to the indicated 1-5 priorities (1 = 
highest priority. 5 = lowest). This line is then returned to the CPU using the 
read bus. The requested word is delivered to the CPU (a), while the line is 
delivered to the data cache (b). The read bits for the word just read and the 
nnodified bits are set. A possible optimization would be to not set the modi- 
fied bit if the line only came from the L2 cache, without any speculative 
additions from the buffers, but we chose not to implement this. 
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Figure 10.  The operation of speculative stores. 
1. On a store, each CPU writes to its data cache, if the line Is present there, 

and its assigned write buffer, using the write txjs. The modified bit of any 
hit lines In the data cache are set. If the read bit of the word stored to is 
cleared, then the written bit Is set to indicate that this word is now a local 
copy The data from the store is recorded in the store buffer in a newly-allo- 
cated line or included in an existing line. 

2. Earf/erCPUs invalidate data cache lines directly, if they write to a cache 
line present in the data cache. Also, these writes cause dependence 
checks. It they write to a location in the data cache or victim buffer with the 
read bit set, a true dependence violation has been detected, and the pro- 
cessor is forced to restart. 

3. Later CPUs just cause the pre-invalidate bits in our data cache lines to be 
set, so that the lines will be invalidated when a new thread is allocated to 
this CPU. 

A. When the contents of a write buffer are no longer speculative, the buffer is 
allowed to drain out into the L2 cache on free cycles. 

6    Performance Evaluation 

For our performance evaluation we use five representative integer 
applications written in C that are not parallclizable using conven- 
tional compiler technology. Four of the applications, compress, 
mSSksim,    ijpeg,   vortex, are from the SPEC95 benchmark 

suite and the fifth application, wc, is a UNIX utility. To generate 
speculative versions of these applications we use a simple source- 
to-source translator to convert the for and while loops into specu- 
lative for and while loops. The speculative source code is com- 
piled using CO with -02 optimization running under SGI IRIX 5.3. 
The speculation control software was written in hand-optimized 
MIPS assembly language, to minimize the overhead of these criti- 
cal routines as much as possible. 

Our simulator models a cycle-accurate MIPS multiprocessor built 
from 4 simple pipelined processors, attached to a memory system 
that realistically models the memory delays and contention in the 
Hydra CMR User code within C library functions is run under sim- 
ulation, but actual operating system calls are handled by tempo- 
rarily dropping from the simulator to the real machine for the 
duration of the call. 

We present the performance results as the speedup of a four proces- 
sor CMP executing a speculative application compared to one of 
the CMP's processors executing an optimized sequential version of 
the same application. The rationale for this way of presenting the 
performance results is that we are interested in the performance 
benefits of adding speculation to an existing CMP rather than a 
comparison of a speculative CMP with an alternative architecture. 

Benchmark Speedup 
Uniprocessor 
Data Cache 

MbiIUte(«) 

Speculative 
DataCadie 

MlnRate(%) 

% increase in 
Lmidi 

wc 0.62 0.61 18.64 548.5 

wc (w/ delay) (I.M 13.47 322.6 

m88ksiin 1.(14 f>M 11.34 282.1 

compress I.IKI 4.35 15.31 -6.4 

compress (w/ 
.synctironizalion) 

I.W 14.27 -10.9 

ijpeg 1.51 0.69 5.76 63.4 

vortex a.'is 1.5') 13.06 38.3 

Table 4.   Benchmark performance summary. 

Our results for the five benchmarks are summarized in Table 4 and 
Figure 11. The table gives speedup values from key benchmarks 
that we tested. The table also lists some important figures about the 
memory system: average miss rates for the data caches for both the 
non-speculative and speculative cases, and the percentage increase 
in load traffic when moving from a non-speculative to speculative 
mode of operation. The larger miss rates during speculation reflect 
the fact that interprocessor communication during speculation 
results in invalidations followed by data cache misses that then 
recover the new data from the L2 cache. The increased number of 
loads is due to a combination of running speculative control han- 
dlers, superfluous speculative memory accesses performed by spec- 
ulative threads that are subsequently restarted, and the fact that 
speculative loops cannot register allocate actively communicated 
variables, increasing the number of memory reference instructions 
that must be generated to do the same work. However, congress 
was an anomaly, since the code that was generated by our compiler 
for the entire uniprocessor coirpress () function required more 
register saving across function calls than the small section of code 
within our subroutine-packaged version of the loop body used by 
the speculative loop mechanism. 
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6.1    Benchmark Analysis 

0     12    3 
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I Run/used 

Figure 11.  Processor utilization breakdown. 

Our resulis from wc demonstrate that the software control over- 
heads associated with our implemenlaion of speculation can 
severely limit speculation performance. The core of wc is a single 
loop that takes an average of only 27 cycles per iteration with fully- 
optimized uniprocessor code, other than the occasional iterations 
when the call to getcharO within the loop must request more 
characters from the OS. Even using the quick loop primitives, the 
speculation control software requires approximately 40% of the 
time on all of the processors just to handle the frequent iteration 
completions (on the head and #3 processor) and dependency viola- 
tions (on processors 1-3), since the 10-15 instruction overhead of 
these operations is about half of the entire loop time! Even with this 
overhead, the parallelism that speculation is able to expose in the 
loop still allows about 40% of the system's processor time to work 
on the actual code. If all of this time could be exploited produc- 
tively, a speedup of 1.6 could be obtained. However, an entire pro- 
cessor's worth of performance is lost to two factors related with 
interprocessor communication. First, wc has two critical loop car- 
ried-dependencies that cannot be avoided — the buffer pointer in 
the getchar () library call, and the local in a word variable that is 
used to count words. While the uniprocessor hits in its data cache 
when accessing these variables, a speculative processor must devote 
ten or more cycles to handling the data cache misses associated 
with this communication. Additionally, as noted previously, this 
communication forces the compiler to insert loads and stores to 
move the values to and from memory during every iteration to facil- 
itate communication, preventing the register allocation of these 
commonly-used variables that may be used in the uniprocessor 
code. The combined effect of these two communication-related 
inefficiencies consumed a processor's worth of execution time on 
this small loop. Due to the critical nature of these memory depen- 
dencies, we also discovered that it was possible to speed up wc sim- 
ply by putting a delay loop at the end of each iteration. The small 
delay incurred by the loop caused the iterations to pipeline more 
effectively, avoiding more of the overhead associated with viola- 
tions at the expense of busy-waiting in the delay loop. 

The loop in m88ksim is over two orders of magnitude larger, run- 
ning for about 5000 cycles and executing an average of 4500 
dynamic instructions during each iteration. With such a long loop, 
the overhead associated with speculation control and inter-proces- 

sor communication had a minimal impact on the overall execution 
time. Instead, some of m88ksim's global variables are read and 
written at locations in the loop, some inside subroutines, that 
severely curtail the amount of parallelism that may be exploited. 
The first speculative processor can use about 15% of its time use- 
fully by overiapping the beginning of each loop iteration with the 
end of the previous one, but most of this time is simply spent over- 
coming the communication inefficiencies, limiting speedup to 
3.5%. Meanwhile, the second and third proce-ssors contribute noth- 
ing, as they must work on iterations two or more ahead that cannot 
overlap with the head iteration at all due to true dependencies. Pre- 
vious work has shown that an aggressive compiler, designed to 
move loads associated with receiving interprocessor communica- 
tion as late as possible in each iteration and sending communicating 
writes as early as possible, might allow more speedup by overiap- 
ping iterations more and allowing much of the discarded time to be 
used effectively [12, 10], but such aggressive compiler optimiza- 
tions arc beyond the scope of this work. 

In between wc and m88ksim is compress. The core of compress 
is fairiy small loop — about 140 cycles per iteration — but large 
enough so that the speculation and communication overheads, 
while significant, do not overwhelm its execution time. Even when 
wc left a critical loop-carried variable alone, performance was 
essentially equal to the uniprocessor version. However, since this 
single variable was such a bottleneck we were able to successfully 
put a synchronization point (described in Section 4.4) around it, a 
simple transformation that a compiler .should be able to perform. By 
exchanging some time spent busy-waiting at the synchronization 
point for the longer violation-and-restart cycles that would other- 
wise be necessary we were able to increa.se iteration pipelining and 
achieve a 9% performance boost with this simple addition. 

Ijpeg is an application with significant amounts of loop-level par- 
allelism. Using our straightforward loop transformations, we were 
able to convert most of the loops in ijpeg into speculative loops 
that executed on all four processors. There were still occasional 
dependencies between loop iterations, but these did not signifi- 
cantly impact performance. Almost all of the discarded execution 
was the result of subroutine forks in the unparallelizable code 
(mostly in the Huffman encoding step of compression) between the 
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loops. These portions of the program are executed in a manner very 
similar to vortex, described below. This benchmark clearly indi- 
cates that our loop speculation mechanisms are able to exploit par- 
allelism in code when that parallelism exists, even without 
extensive compiler optimizations. With aggressive optimizations, 
these results should be even better, as i jpeg is currently written so 
that a fairly large amount of the existing parallelism is often 
obscured by the existing program flow, especially during the decod- 
ing stage of the application. 

Finally, our results on vortex indicate that subroutine parallelism 
cannot be effectively utilized by our simulator due to control soft- 
ware overhead and a lack of parallelism between the code in sub- 
routines and the continuation code following them. Our simple last 
value return value prediction mechanism was able to obtain a 
96.6% successful prediction accuracy when speculating on the 
pseudo-OOP vortex code, thanks to the large number of functions 
that return nothing or rarely-raised error flags. However, the severe 
misprediction penalty for the remaining 3.4% of the predictions — 
complete flushing of the system's speculative state — combined 
with frequent memory dependence violations originating from the 
side effects of the functions made parallelism virtually impossible 
to find. Most of the speculative processors spend their time waiting 
to become the head, since the wide variety of subroutines run in dif- 
ferent threads leads to load imbalance. Each time a long subroutine 
becomes the head, three short ones are typically stuck waiting on 
the three speculative processors. Increasing the amount of parallel- 
ism exploitable would require a very sophisticated compiler that 
performed interprocedural optimizations to increase the distance 
between loads and stores that might be communicated between pro- 
cessors running different subroutines in parallel. It might also be 
forced to break up longer subroutines into smaller parts to help 
solve load balancing problems. It should also be noted that the 
overhead associated with software control of speculation is excef>- 
tionally high because vortex is parallelized only using speculative 
procedure continuation, which must use the full subroutine control 
protocol instead of the low-overhead looping protocols. As a result, 
the overhead is comparable to that associated with fairly small 
loops like wc or cortpress even though the subroutines are gener- 
ally much larger than the loops in those benchmarks, since small 
subroutines are simply pruned off and avoided by our speculative 
thread selection mechanisms. 

6.2    Memory Results 
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Figure 12.  Speculative store buffer size requirements. 

While our results indicate shortcomings in the software-based con- 
trol system, the memory buffering system described in Section 5 
worked very well. We found that the memory system added very lit- 
tle latency beyond the basic L2 cache hit time required after every 
communication invalidation, since it was originally designed to 
handle the loads of large multiprocessor FP applications. We deter- 
mined that the optional pre-invalidation bits only help improve per- 
formance by 1-2%, but the hardware overhead necessary to add 
these bits is so small that their inclusion in the final design still 
makes sense. On the other hand, the write bits proved to be essen- 
tial, as all of our simulations done without them resulted in the use- 
ful work done by the speculative processors dropping to nearly zero 
in most cases due to false violations on WAW hazards. 

Figure 12 shows the numbers of 64B L2 buffers filled during each 
successful speculative thread. The results clearly indicate that a 
buffer of 24-32 lines (1.5 KB - 2 KB) per processor is sufficient to 
handle even fairly large loop iterations or subroutines. Even the 
mSSksimloop iterations would have fit in a 21-line buffer. A small 
number of the subroutines speculated on in vortex and ijpeg 
required more buffer space, but these routines were infrequent 
enough that simply dumping their store buffer state into the L2 
cache and then completing the iteration non-speculatively after 
becoming the head processor would probably have little impact on 
performance, as most of these routines would be running on the 
head processor by the time they filled up a 2 KB buffer anyway. 

These results indicate that the basic Hydra memory system lends 
itself well to speculative operation. Allowing for a fifth 2 KB buffer, 
so that one is free to drain while the other four accept references 
from processors, the system requires only about 13KB of extra on- 
chip memory — smaller than one of the eight existing data caches. 
Even allowing for a fair amount of control logic overhead, it seems 
reasonable to believe that the hardware we propose would not be 
larger than a pair of the existing data caches, which is a small frac- 
tion of the total die area. 

7    Summary and Conclusions 

We have demonstrated that by judicious use of hardware and soft- 
ware mechanisms it is possible to add data speculation capability to 
a CMP. Our results indicate that a data speculation system similar to 
ours can extract "hidden" parallelism from loops in uniprocessor 
code. It does this by allowing compilers to obliviously parallelize 
loops that cannot be fully analyzed for dependencies at compile 
time due to problems such as C pointer disambiguation. If there is 
parallelism, as on ijpeg, the application can speed up signifi- 
cantly. If there is not, as on mSSksim, the application still works, 
even if speculation provides no benefit. An optimizing compiler 
designed to arrange loads and stores to optimize communicated 
dependencies as much as possible among speculative threads might 
help this further [12]. However, our mechanisms to extract non- 
loop parallelism were hindered by the high software overhead of 
the reasonably complex control code, the load imbalance caused by 
running a mix of subroutines of varying sizes, and frequent memory 
dependencies caused by the side effects of subroutines. We feel that 
the results obtained using one particular speculation implementa- 
tion are not sufficient to condemn the concept of subroutine contin- 
uation speculation, especially since we lacked special compiler 
support. However, our results clearly indicate that software control 
of speculation only makes sense if the control protocols are fairly 
simple, such as our "quick" loops, to avoid slowdowns when specu- 
lative code lacks parallelism and the speculative overhead is there- 
fore wasted. Instead, more complex thread-generation and control 
algorithms cleariy demand more sophisticated hardware support, 
such as that included in the Multiscalar architecture [11]. 
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Our results clearly indicate that it docs not make sense to design a 
CMP just to take advantage of speculative execution. The primary 
reasons for switching to a CMP are technology issues, its parallel 
programming pcrfonnancc, and its multiprogramming perfor- 
mance, as noted in [8]. However, speculation does not require the 
addition of a large amount of hardware to an existing CMP, so the 
cost-to-benefit ratio is reasonable enough to consider including it 
for the applications in which it proves helpful. As shown in [8], the 
individual processors in a CMP will typically be slower than a con- 
ventional wide superscalar processor of equal area while running 
sequential applications. Since the results in that paper indicated that 
a single, large superscalar processor would just be moderately 
faster than one of the processors in a CMP on these applications, 
speculation may allow a CMP to provide competitive performance 
on programs that have parallelism that cannot be extracted with a 
conventional parallelizing compiler. Optimizing compilers 
designed to generate code specifically for a speculative CMP might 
allow an even larger number of programs to benefit [10, 12]. Thus, 
speculation may help bridge the gap between the performance of 
CMPs and superscalar architectures on applications that a parallel- 
izing compiler cannot handle. Also, the ability to flexibly deactivate 
speculation on processors is an advantage that should not be over- 
looked. When speculation proves to be unproductive, or if a truly 
parallel section of code is encountered, a CMP with speculation can 
quickly transform into a conventional SMP to run a parallel or mul- 
tiprogramming workload with specdups that can greatly exceed 
those obtained only by exploiting parallelism within a thread, a fea- 
ture that does not exist on conventional processors. 

Considering our previous results from [8), it is clear that in the near 
future, a superscalar architecture is the best way to extract fine- 
grained uniprocessor parallelism from C integer program codes, 
given a certain amount of die area. However, it should be noted that 
the fine-grained threaded parallelism extracted by data speculation 
is orthogonal to the instruction-level parallelism extracted by super- 
scalar ILP mechanisms. Thus, when it is possible to implement sev- 
eral wide-issue superscalar processors on a die together as a CMP, 
but impractical to simply make a larger single processor, a specula- 
tion mechanism similar to the one we propose might become a 
much more attractive method to extract additional performance 
from uniprocessor codes. 
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